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A new basic framework for solid–fluid mixture flow simulation was developed using mov-
ing particle methods. The interactions between solid and fluid were modeled by the finite
volume particle (FVP) method. The distinct element method (DEM) together with a multi-
time-step algorithm was introduced into the FVP method to calculate the effects of contact
between solid bodies and between solid bodies and walls. The introduced DEM model was
verified by experimental analyses for the collapse of multiple solid cylinder layers. The
proposed algorithm using the optimized DEM model was then applied to a water dam
breaking, involving multiple solid cylinder layers. A comparison between experiments
and simulations demonstrated the DEM model introduced into the FVP method is effective
in representing solid–fluid mixture flows reasonably well.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

Numerical studies on fluid–solid mixture flows are needed for understanding many phenomena in engineering fields. It
would be difficult for conventional Eulerian mesh methods to directly simulate such complicated flows since it is necessary
to capture or track fluid–solid interphase. Recently, several particle methods have been developed for numerical simulations.
Among them, moving particle methods, based on the fully Lagrangian framework, are more appropriate for fluid–solid inter-
phase simulations because the interphase is always clearly represented in calculations.

There are several kinds of moving particle methods for describing fluid dynamics, such as smoothed particle hydrody-
namics (SPH) [1], the moving particle semi-implicit (MPS) method [2] and the finite volume particle (FVP) method [3], which
was introduced in detail in our paper [4]. It is worth to note that there is a moving particle method with a similar name as
FVP method, referred to the finite-volume particle method (FVPM), which was developed on the basis of numerical flux func-
tions for compressible flows [5]. In these methods, the calculation region is occupied by discrete moving particles and thus a
mesh grid is unnecessary. It has been verified that they are able to simulate continuous fluids with satisfactory results; e.g.,
the methods have been applied to shock tubes [6], water dam breakage [7] and impact of a liquid droplet falling into a liquid
pool [4]. Unlike mesh methods, there is no need for interphase construction in the moving particle methods, because each
phase can be represented by moving particles with specific physical properties. Therefore, the application of moving particle
methods to solid–fluid mixture flows is straightforward.

There has been successful numerical modeling of the interactions of a single solid body with fluid using moving particle
methods. For example, the MPS method together with the passively moving solid (PMS) model has been used to simulate a
solid float in breaking waves [2] and a ship profile being hit by a wave has been simulated using the particle finite element
method [8]. These studies show that moving particle methods might be powerful tools in the direct simulation of fluid–solid
mixture flows without interface tracking between phases.
. All rights reserved.
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As far as we know, there is limited, if any, published work on more complicated numerical simulations of fluid flow with
multiple solid bodies using moving particle methods. The present study aims to build a basic framework for such numerical
simulations and validate the framework with experiments. First, the algorithm for simulating interactions between fluid and
one solid body, mentioned above [2], is realized using the FVP method. We then investigate how to include the collision
forces between solid bodies and between a solid body and a wall in the developed computer code using the FVP method.
As a well-known fully Lagrangian numerical method for granular flow simulations, the distinct element method (DEM)
[9] is an appropriate choice to calculate the forces in the FVP framework.

However, a typical DEM calculation requires a much smaller time step compared with the FVP method. To cope with this
problem, a multiple time-step scheme is developed for the FVP and DEM coupling calculations, with each method using a
different time-step size. In addition, the size of a solid body would be much larger than that of a typical moving fluid particle
in some engineering applications. The present study undertakes a basic investigation by making two-dimensional simula-
tions of solid bodies with uniform shape. Multiple moving particles are used to represent a solid body in the simulations.
The DEM calculation is implemented for each solid body, while the FVP calculation is carried out for all moving particles.

Finally, code verifications are carried out using two series of experiments. First, the introduced DEM model is validated for
the collapse of multiple solid cylinder layers. Water dam breakage with multiple solid cylinder layers is then investigated to
verify the proposed framework for solid–fluid mixture flow simulations.
2. Numerical methods

2.1. Governing equations for fluid–solid mixture flows

The governing equations for incompressible fluid are
r �~u ¼ 0
D~u
Dt ¼ �

ðrpÞll
ql
þ rðl�r~uÞllql

þ ~f sl
ql
þ ~f others

ql

(
ð1Þ
where~u, p and ql are the velocity, pressure and density of a fluid particle, respectively, l is the dynamic viscosity, (rp)ll and
rðl � r~uÞll are the pressure and viscosity forces within the fluid phase, respectively,~f sl is the interaction force between fluid
and solid phases, and~f others are other volume forces, such as gravity.

The governing equations for solid bodies are
m D~u
Dt ¼~Fcol þ~f lsV þ~Fothers

I D~x
Dt ¼ Tcol þ Tls þ Tothers

(
ð2Þ
where~u; ~x, m, V and I are the translation velocity, rotation velocity, mass, volume and inertia of a solid body, respectively.~Fcol

and Tcol are the force and torque, respectively, caused by collisions between solid bodies and collisions of solid bodies with
solid walls,~f ls and Tls are the volume force and torque, respectively, caused by interactions between fluid and solid phases,
and ~Fothers and Tothers are other forces and torques, respectively, for example those due to gravity.

2.2. Overview of the FVP method

In the present study, we choose the FVP method because it has been verified as being very stable numerically, especially
for free surface flow simulations [10]. In the FVP method, the control volume of one moving particle is assumed as a circle in
two-dimensional simulations [4]:
V ¼ pR2 ¼ ðDlÞ2 ð3Þ
where V, R and Dl are the particle control volume, radius of the particle control volume and initial particle distance, respec-
tively. According to Gauss’s law, the gradient and Laplacian operators are expressed by
r/ ¼ lim
R!0

1
V

I
V
r/dV ¼ lim

R!0

1
V

I
S

/~ndS ð4Þ

r2/ ¼ lim
R!0

1
V

I
V
r2/dV ¼ lim

R!0

1
V

I
S
r/ �~ndS ð5Þ
where / is an arbitrary scalar function, and S and V are the particle surface area and volume, respectively. S and V are equiv-
alent to 2pR and pR2 in a two-dimensional system, respectively.

As a result, in the FVP method the gradient and Laplacian terms can be approximated as [4]
hr/ii ¼
1
V

I
S

/~ndS
� �

i

¼ 1
V

X
j–i

/i þ
/j � /i

~rij

�� �� R

 !
~nijDSij ð6Þ
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where the interaction surface of particle j with particle i, DSij, can be calculated by
DSij ¼
wij

n0 S ð8Þ
with the initial number density of the particles, n0. The number density of particle i can be calculated as
ni ¼
X
j–i

wij ð9Þ
The value of n0 is set to the number density of a particle which is not near or on boundaries. The unit vector of the distance
between two particles, ~nij, is expressed by
~nij ¼~rij=j~rijj ¼ ~rj �~ri
� �

=j~rijj ð10Þ
where~ri and~rj are the positions of particles i and j, respectively.
The kernel function wij is defined as [4]
wij ¼ sin�1ðR=j~rijjÞ � sin�1ðR=reÞ ð11Þ
where re is the cut-off radius and is usually chosen as 3.1Dl. Fig. 1 is a schematic diagram of neighboring particles around
particle i within the cut-off radius. If the distance between two particles is larger than the cut-off radius, the kernel function
is set as zero.

Using Eqs. (8)–(10), Eqs. (6) and (7) can be rearranged as
hr/ii ¼
S

Vn0

X
j–i

/i þ
/j � /i

j~rijj
R

� �
wij

~rij

j~rijj
ð12Þ

hr2/ii ¼
S

Vn0

X
j–i

/j � /i

j~rijj
wij ð13Þ
Using the gradient and Laplacian models, the governing equations for fluids can be easily discretized. Fig. 2 is a flowchart of
the FVP calculation. The pressure implicit with splitting of operators (PISO) algorithm [11] is applied to the FVP method. Cal-
culations are separated into prediction and correction stages [4]. In the prediction stage, particles move with guessed veloc-
ities to temporal positions
~r� ¼~rn þ DtFVP �~u� ð14Þ
where~u� is the guessed velocity and its value is initially set to~un,~r� and~rn are temporal and previous positions, respectively,
and DtFVP is the time step size in the FVP calculation.

On the temporal positions, the governing equations for incompressible fluids can be approximated as
Fig. 1. Neighboring particles around particle i within the cut-off radius.



Fig. 2. Flowchart of the FVP calculation.
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~u�� �~un

DtFVP
¼ � 1

q
rp�� þ 1

q
r � lr~u�� þ

~f ��others

q
ð15Þ

r �~u�� ¼ 0 ð16Þ
where superscript ��means new time step values. Combing Eqs. (15) and (16), a pressure Poisson equation can be obtained
as
r � 1
q
rp��

� �
¼ r �

~un

DtFVP
ð17Þ
The above equation should be rearranged into an appropriate form for multi-phase flow simulations. Since the pressure
forces between two interacting particles are equal to each other, the following approximation can be obtained:
rp��ij
qi
¼
rp��ji
qj
¼ p��S � p��i

qij~rijj=2
¼

p��j � p��S
qjj~rijj=2

ð18Þ
where p��i and p��j are the pressures of particles i and j, respectively, p��S is the pressure on the surface between two particles,
and rp��ij is the pressure forces acting on particle i and given by particle j. After arrangement, Eq. (18) can be changed into
rp��ij
qi
¼ 2

qi þ qj

p��j � p��i
j~rijj

ð19Þ
The resultant form of the left-hand side of the Poisson equation is expressed by
r � 1
q
rp��

� �� �
i

¼ S

Vn0

X
j–i

2
qi þ qj

p��j � p��i
j~rijj

wij ð20Þ
In the correction stage, Eq. (17) is solved via the incomplete Cholesky conjugate gradient (ICCG) method. The obtained pres-
sure p** is used to solve the momentum equation implicitly. The resultant velocity~u�� is used again as the guessed velocities
~u� in the prediction stage. This iterative procedure usually needs only three iterations for one time step to obtain results with
satisfactory accuracy [4].

In the FVP calculation, the time-step size DtFVP is taken according to the Courant–Friedrichs–Lewy condition:
max
abs½ð~uj �~uiÞ �~n�DtFVP

j~rijj

	 

< e ð21Þ



2556 S. Zhang et al. / Journal of Computational Physics 228 (2009) 2552–2565
where abs[ � ] means absolute value, and e is usually chosen as 0.2. If the above condition is not satisfied, the half value of the
previous time-step size is used [4].

2.3. Overview of the DEM model

In the present study, we formulate the DEM calculation for solid bodies of the same diameter in two-dimensional sys-
tems. Therefore, they are modeled as cylinders with a unit length. If the distance between the mass centers of two solid
bodies is less than their diameters, they are defined as being in contact. Otherwise, the collision force between two bodies
is assumed to be zero.

The DEM model is described schematically in Fig. 3. The collision effects between two solids are modeled by a spring and
dashpot, which represent elastic and damping forces, respectively. The slide represents a switch for the maximum static fric-
tion force. In addition to the global coordinate (x,y), a local coordinate (n,g) is constructed for solid ii for convenience of cal-
culation. The two-dimensional collision force of solid body ii received from solid body jj, ~Fjj!ii ¼ ðFn;jj!ii; Fg;jj!iiÞ, is calculated
in DEM as [12]
Fn;jj!iiðtÞ ¼ enðtÞ þ dnðtÞ
enðtÞ ¼ enðt � DtDEMÞ þ knDnii;jj

dnðtÞ ¼ cn
Dnii;jj

DtDEM

8><
>: ð22Þ

Fg;jj!iiðtÞ ¼ esðtÞ þ dsðtÞ
esðtÞ ¼ esðt � DtDEMÞ þ ksDgii;jj

dsðtÞ ¼ cs
Dgii;jj

DtDEM

8>><
>>: ð23Þ
where DtDEM is the time-step size of the DEM calculation. The following conditions apply to the collision force
Fn;jj!iiðtÞ ¼ Fg;jj!iiðtÞ ¼ 0 for enðtÞ 6 0 ð24Þ
jFg;jj!iiðtÞj ¼ l � jenðtÞj for jesðtÞj > lenðtÞ ð25Þ
where Fg,jj?ii(t) has the same sign as es(t). Eq. (24) states there is no contact effect with negative elastic force, which means
that two solids detach from each other. Eq. (25) is a switch between static and dynamic friction forces.

In Eqs. (22) and (23), en and es are the elastic forces in normal and tangent directions, respectively, dn and ds are the damp-
ing forces in normal and tangent directions, respectively, kn and ks are the stiffnesses in normal and tangent directions,
respectively, and cn and cs are the damping coefficients in normal and tangent directions, respectively. The relationships be-
tween the DEM parameters [12] are
ks ¼
kn

2ð1þ tÞ ð26Þ
Fig. 3. Schematic description of the DEM model.
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cn ¼ acn � 2
ffiffiffiffiffiffiffiffiffi
mkn

p
ð27Þ

cs ¼
cnffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ð1þ tÞ
p ð28Þ
where m is the mass of a solid body, t is the Poisson ratio, acn is the tuning parameter, l is the maximum static friction coef-
ficient, and n and g are the local coordinates in normal and tangent directions, respectively. The relationship between the
global and local coordinates is expressed for Dnii,jj and Dgii,jj, which are the increases in distance between two solid centers
in the normal and stress directions, respectively [12]:
Dnii;jj

Dgii;jj

" #
¼ Mii

uii � ujj

v ii � v jj

� 

DtDEM þ

0 0
xc;ii xc;jj

� 

Rii

Rjj

� 

DtDEM ð29Þ
where [u,v] and xc are the solid’s translation velocity vector and rotation velocity, respectively, and xcis positive in the anti-
clockwise direction. Rii and Rjj are the diameters of solids ii and jj, respectively, and Mii is the translation matrix between
global and local coordinates. In two-dimensional systems, Miiis calculated as
Mii ¼
cosðxc;iiDtDEMÞ � sinðxc;iiDtDEMÞ
sinðxc;iiDtDEMÞ cosðxc;iiDtDEMÞ

� 

ð30Þ
The collision force acting on solid body ii is calculated as a summation of all forces applied by neighboring solid bodies that
are in contact with solid body ii:
~Fcol;ii ¼
X

jj

~Fjj!ii ð31Þ
In addition, to keep numerical stability in the DEM calculation, it is recommended that [13]
DtDEM ¼
2p
atn

ffiffiffiffiffi
m
kn

r
ð32Þ
where atn is the model parameter, which will be optimized by experimental analyses in the present study. Eq. (32) enables us
to choose an appropriate value for the normal stiffness from a given time-step size of the DEM calculation. As a result, a
larger time-step size can be applied without losing the characteristic behaviors of solid movements. The flowchart for the
DEM calculation is shown in Fig. 4.
Fig. 4. Flowchart of the DEM calculation.
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2.4. Coupling algorithm for solid–fluid mixture flow simulation

The FVP method and DEM model together with the PMS model [2] are coupled to directly simulate the solid–fluid mixture
flows. Since the diameters of solid bodies would be larger than those of the moving particles, multiple moving particles are
used to represent one solid body. In addition, the FVP method and DEM model applied in the present study use fully explicit
and fully implicit algorithms, respectively. As a result, the characteristic time-step size of the DEM calculation should be
much smaller than that of the FVP calculation. To cope with this problem, a multiple time-step algorithm is introduced.
The procedure for coupling the FVP and DEM calculations is described schematically in Fig. 5.

First, all moving particles are assumed as fluid particles and included in the FVP calculation, which is the same treatment
as in the MPS simulation with the PMS model [2]. Thereafter, the velocities and pressures of fluid particles are updated. For
the moving particles representing solid bodies, the PMS model [2] is applied to calculate the translation and rotation veloc-
ities of each solid body:
~u��c;ii ¼
1
N

XN

i¼1

~u�i ð33Þ

~x��c;ii ¼ ~xn
c;ii þ

1
Iii

XN

i¼1

mið~rn
i �~rn

c;iiÞ � ð~u�i �~un
i Þ ð34Þ
where mi is the mass of solid particle i,~u� is the velocity of the solid moving particle after the FVP calculation,~u��c and ~x��c are
the translation and rotation velocities of solid bodies, respectively, N is the number of the solid particles representing the
solid body ii, ~rn

i is the position of solid moving particles, which belong to solid body ii in the previous time step, and ~xn
c

is the rotation velocity of solid bodies in the previous time step. The inertia I of the rigid solid body is calculated as
Iii ¼
XN

i¼1

mið~rn
i �~rn

c;iiÞ
2 ð35Þ
and the mass center~rn
c of the solid body in the previous time step is calculated as
~rn
c;ii ¼

1
N

XN

i¼1

~rn
i ð36Þ
Thereafter, the solid moving particle’s position and velocity are modified as
Fig. 5. Schematic description of the coupling algorithm for the FVP and DEM calculations.
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~r��i ¼~rn
i þMiið~rn

i �~rn
c;iiÞ ð37Þ

~u��i ¼
~r��i �~rn

i

DtFVP
ð38Þ
The interaction force between fluid and solid phases at this time step can be thus represented by the pressure and stress
forces between solid and fluid particles using the PMS model:
~f sl ¼ �ðrpÞls þrðl � r~uÞls ð39Þ
If there is only one solid interacting with fluid, the new time-step value for positions and velocities of solid moving particles
is then updated using Eqs. (37) and (38). In the present study, the DEM calculation is then performed for each solid body to
simulate the collision effects. The increases in distances Dn and Dg are calculated from ~u��c and ~x��c with Eqs. (29), (33) and
(34). The collision force between solid bodies is then solved using Eqs. (22), (23) and (31). Correspondingly, the velocities of
solid bodies are calculated as
~un;kþ1
c;ii ¼ ~un;k

c;ii þ DtDEM

~Fn;k
col;ii

mii
ð40Þ

~xn;kþ1
c;ii ¼ ~xn;k

c;ii þ DtDEM

Tn;k
col;ii

Iii
ð41Þ
where k is the number of time steps in the DEM calculation and n is the time step of the FVP calculation, and mii is the mass of
the solid body. The initial values of ~un;0

c and ~xn;0
c are equal to ~u��c and ~x��c , respectively.

Using translation and rotation velocities, the rotation angle and mass center of the solid body are updated as
~rn;kþ1
c;ii ¼~rn;k

c;ii þ DtDEM~u
n;kþ1
c;ii ð42Þ

~hn;kþ1
ii ¼~hn;k

ii þ DtDEM~xn;kþ1
c;ii ð43Þ
where~rn;0
c and hn,0 are equal to~rn

c and ~hn, respectively. The position and velocity of the solid particle are updated as
~rn;kþ1
i ¼~rn;k

i þMiið~rn;k
i �~r

n;k
c;iiÞ ð44Þ

~un;kþ1
i ¼

~rn;kþ1
i �~rn;k

i

DtDEM
ð45Þ
where~rn;0 is equal to~rn.
Finally, after the DEM calculations are performed till DtFVP = (k + 1)DtDEM is satisfied, the position and velocity of the solid

moving particle are updated as
~rnþ1
i ¼~rn;kþ1

i ð46Þ
~unþ1

i ¼~un;kþ1
i ð47Þ
3. Numerical simulations

3.1. Verification of the DEM model

As mentioned above, all the parameters in the DEM calculation can be determined with the DEM time-step size DtDEM and
adjustable parameters, atn and acn, using Eqs. (26)–(28), (32). To verify this approach and determine the appropriate adjust-
able parameters, experimental analyses were performed for the collapse of multiple solid cylinder layers.

Fig. 6 is a photograph of the experimental setup for the collapse of solid cylinder layers. Solid cylinders were initially piled
up as several layers on the observers’ left in an acrylic resin tank with a length of 26 cm, a width of 10 cm and a height of
26 cm. The solid cylinders were made of aluminum and had a density of 2.7 � 103 kg/m3, diameter of 1.0 cm and length of
9.9 cm. The initial stationary state of the cylinder layers was maintained by a plate that could be withdrawn. The number of
aluminum cylinder layers was an experimental parameter and 6, 8, 10 and 12 layers were selected. Solid layers with five or
six cylinders were alternately piled up between the left wall of the tank and the plate, which was 6 cm from the wall. After
the plate was quickly removed vertically upwards, the cylinder layers began collapsing owing to gravity and the cylinders
ran toward the right wall of the tank. The transient behavior of the cylinder layers was recorded by a high speed camera
shooting at 200 frames per second.

A preliminary numerical study was performed to tune the adjustable parameter atn using a Poisson ratio of 0.3, maximum
static friction coefficients of 0.3 and a time step set as 1.0 � 10�6 s. In this simulation, the penetration length between two
solid bodies during collision was investigated. The adjustable parameter atn was fixed as 300 with a maximum penetration
length of less than 1% of the solid body’s diameter. To determine an appropriate value for the adjustable parameter acn, the
DEM simulations for the collapse of aluminum cylinder layers were performed in a two-dimensional system by neglecting



Fig. 6. Experiment setup for the collapse of solid cylinder layers (12 layer case).

Fig. 7. Transient behavior of a six cylinder layer collapse (left column: experiment; right column: simulation).
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the front and back walls of the tank. The stiffness and damping coefficients of the walls were set to those of aluminum. acn

was thus tuned as 0.3.
In the DEM simulations for the collapse of aluminum cylinder layers, the initial collision forces were set as zero for all

cylinders. The collapse of the cylinder layers was simulated after settling of the cylinders for 1.0 s. This treatment was nec-
essary since the cylinders were not in contact with each other initially. The contacting length is much longer than the moving
particle diameter. As a result, it is difficult to define the contacting length for each solid cylinder initially. In the following
discussions, the time zero is defined by the removal of the withdrawal plate.

The transient behavior and average of the mass centers of the cylinders were compared with the experimental results.
The mass center average was calculated using
Fig. 8.
are the
~raver ¼
1
N

XN

ii¼1

~rc;ii; ð48Þ
where N is the number of cylinders and~rc;ii is the mass center of cylinder ii. Figs. 7 and 8 show the simulation results in the
case of six layers of cylinders compared with experimental results. The present DEM calculations well represented the exper-
imental results. The simulated transient behavior of the layer collapse agrees well with the experimental results, as can be
seen in Fig. 7. Fig. 8 shows good agreement between simulation and experimental mass center averages, the latter obtained
by averaging the results for five experiment runs.

From these results, it can be concluded that the present approach enables us to determine the DEM parameters reason-
ably well. In addition, the DEM time-step size used in the present simulations can be much larger than a typical DEM time
step, which would be about approximately 1.0 � 10�8–1.0 � 10�9 s in the present cases. This is useful in improving the effi-
ciency of DEM calculations.
3.2. Verification of solid–fluid mixture flows

The breaking of a water dam involving multiple solid cylinder layers was used to verify the proposed coupling algorithm
for the FVP and DEM calculations. The experimental data for verification were obtained using the same experimental setup
as that used for verification of the DEM model, although the cylinder layers were submerged in water. The water dam height
was set at 12 cm, and 6, 8, 10 and 12 cylinder layers were used.

For the present solid–fluid mixture flow simulations, two-dimensional calculations were also performed. The density and
dynamic viscosity of water were set as 1000 kg/m3 and 1.0 � 10�3 m2/s, respectively. The initial distance between moving
particles was 1 mm. One cylinder was represented by 69 moving solid particles. The initial moving particle arrangement
is shown in Fig. 9 for the case of six cylinder layers. The FVP and DEM time-step sizes were chosen as 1.0 � 10�4 s and
1.0 � 10�6 s, respectively. In the present DEM calculation, the stiffness and damping coefficients were the same as those used
in the previous simulation of the collapse of solid cylinder layers. The plate to be withdrawn was represented by moving
particles in one layer. The layer was pulled vertically upward at a velocity of 2.0 m/s. After settling of the cylinders in the
water dam for 1.0 s, the breaking of the water dam involving solid cylinder layers was simulated. In the following discus-
sions, time zero corresponds to the start of the withdrawal of the plate. Simulations with and without use of the DEM model
were carried out and compared with experiments to determine the effect of the collision forces between solid phases.
Transient average of mass centers of cylinders in a six cylinder layer collapse (a) in the horizontal direction and (b) in the vertical direction (x and y
positions of the mass center in horizontal and vertical directions, respectively; L is the length of the tank).



Fig. 9. Initial particle arrangement for simulation of water dam breakage with six solid cylinder layers.

Fig. 10. Transient behavior of water dam breakage with six solid cylinder layers (left column: experiment; center column: FVP simulation using the DEM
model; right column: FVP simulation not using the DEM model).
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Figs. 10 and 11 show the comparison of transient mixture flow behaviors for the simulation and experiment in the cases
of six and twelve cylinder layers, respectively. It can be clearly seen that the simulations with and without use of the DEM
model are quite different. This difference seems reasonable. The collision forces simulated by the DEM model between cyl-
inders and walls of the tank retard the movements of the mixture flow. To check this point, as shown in Fig. 12, the arriving
time, which corresponds to the first instance of a cylinder coming into contact with the right wall of the tank, was compared
for the simulations and experiments. The arriving times obtained by the simulations using the DEM model and the exper-
iments were around 0.35 s, while those obtained by the simulation not using the DEM model was around 0.25 s. Though the



Fig. 11. Transient behavior of water dam breakage with 12 solid cylinder layers (left column: experiment; center column: FVP simulation using the DEM
model; right column: FVP simulation not using the DEM model).

Fig. 12. Comparison of the arriving times between FVP simulations using/not using the DEM model and experimental results.
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simulations using the DEM model were not in complete agreement with the experiments regarding the arriving time, it can
be said the DEM model improves the results of the FVP simulations.

In addition, the characteristic behaviors of the cylinder movement in the mixture flow were well represented by the sim-
ulations using the DEM model. For convenience, in Fig. 13, the initial arrangement of the six layers of cylinders in the water
dam is marked schematically by an upper-left oval, an upper-right oval and a central triangle. A comparison of the mixture
flows in the tank at 0.35 s for the experiment and simulation using the DEM model is shown in Fig. 14. In both the exper-
iment and simulation, characteristic behaviors are seen in the cylinder movement. The upper-right cylinders detach from the
cylinder cluster and then bounce on the bottom wall. The upper-left cylinders drop to the bottom-left corner of the tank and
then spread laterally. The central cylinders move together and maintain their triangular formation till they fully spread on
the bottom wall. Such phenomena cannot be simulated by the calculations without using the DEM model.



Fig. 13. Initial arrangement of the six-layer cylinders in a water dam (left: experiment; right: simulation).

Fig. 14. Mixture flow behaviors after the water dam breakage with six cylinder layers at 0.35 s (left: experiment; right: simulation using DEM model).

Fig. 15. Static average of mass centers of cylinders after the water dam break (a) in the horizontal position and (b) in the vertical position (x and y are the
positions of mass center in horizontal and vertical directions, respectively; L is the length of the tank).
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In Fig. 15 the static average centers of mass of the cylinders after the mixture flow settled are compared for the exper-
iments and simulations using the DEM model for the cases with different numbers of cylinder layers. The experimental re-
sults were the mean measurement of five runs. It can be said that the present simulation using the DEM model represents
the static state of the mixture flow after the water dam breaks reasonably well by comparison with the experimental result.
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4. Conclusions

In this study, a coupling algorithm for FVP and DEM calculations was proposed and verified. Numerical simulations of
experiments in which multiple solid cylinder layers collapsed were performed to validate the approach for defining appro-
priate parameters in the DEM calculations. The present DEM simulations reproduced the experimental results well under the
present experimental conditions. Thereafter, the proposed algorithm was applied to the simulation of a water dam breaking,
involving multiple solid cylinder layers. The FVP simulation using the DEM model reasonably represented the transient
behavior of the solid–fluid mixture flow by comparison with the experiments. As a result, it can be concluded that a basic
framework for the moving particle method was successfully developed for solid–fluid mixture flow simulations. Although
the present numerical method was formulated for solid phase with uniform and two-dimensionally symmetrical shape,
its extension to three-dimensional systems might enable us to treat arbitrary solid shapes by introducing the DEM calcula-
tion to each moving particle representing the solid phase.
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